Question Number	Answer		Mark
1(a)(i)	Two relevant precautions with reasons, e.g.		
	Ensure that the thermometer and coil are at the same part of the beaker so that the results are not affected by differences in temperature	(1)	
	Stir water so that the results are not affected by differences in temperature	(1)	
	Check the meter for zero error by connecting a lead across its terminals so there is no systematic error in the resistance measurements	(1)	
	Ensure small current so no heating effect in addition to hot water which would make results inaccurate	(1)	
	Switch off between readings so no heating effect in addition to hot water which would make results inaccurate	(1)	
	Read thermometer at eye level to avoid parallax errors	(1)	2
1(a)(ii)	This will ensure that the readings are simultaneous Or Higher sampling rate	(1)	1
1(b) (i)	(The straight line) does not pass through the origin	(1)	1
1 (b) (ii)	As temperature increase the (lattice) ion/atom vibrations increase	(1)	1
	(for the same current) electrons will collide more frequently with the vibrating (lattice) ions/atoms	(1)	
	More energy dissipated by collisions so (for constant <i>I</i>) greater <i>V</i> required Or (constant <i>V</i> gives) lower <i>v</i> and, since $I = nAvq$, <i>I</i> will be lower	(1)	
	Since <i>V</i> increases and $R = V/I$, <i>R</i> will increase with temperature Or Since <i>I</i> decreases and $R = V/I$, <i>R</i> will increase with temperature	(1)	4
1(c)	Use of $R = \rho l/A$	(1)	
	Use of correct area in $R = \rho l/A$	(1)	
	length = 0.66 m	(1)	
	$\frac{\text{Example of calculation}}{l = 12.4 \ \Omega \times 5.19 \times 10^{-9} \ \text{m}^2 / 9.71 \times 10^{-8} \ \Omega \ \text{m}}$ length = 0.663 m		
			3

	Total for question		14
			3
	Temperature (from graph) = $28 \degree C$		
	Resistance of resistor = 14.4Ω		
	$24 \Omega / R = 7.5 V / 4.5 V$		
	Example of calculation		
	Temperature (from graph) = $27 \degree C$ to $29 \degree C$	(1)	
	Resistance of resistor $= 14.4 (32)$	(1)	
	Resistance of resistor = $14.4 (\Omega)$	(1)	
	Use of $I = V/R$ for fixed resistor and $R = V/I$ for resistance under investigation	(1)	
	Or		
1(d)	Use of ratio of resistors = ratio of p.d.s		

Question Number	Answer	Mark
2 (a)	Third column completed 4.04 and 3.50(1)Points plotted correctly and straight line drawn (ecf error in calculation for points plotted)(1)	2
2 (b)	Any evidence of gradient (look at graph)(1)Value between 0.061 and $0.066 \text{ (cm}^{-1})$ (ignore - sign)(1) Or value between 6.1 and 6.6 (m ⁻¹)	2
	Total for question	4

Question Number	Answer	Mark
3(a)(i)	$v = f\lambda$ (words or symbols not numbers) length of string = $\lambda/2$ OR wavelength = 2 x length OR node to node = $\lambda/2$	(1)
		(1)
3(a)(ii)	πd ² /4 OR π(D3/2) ² OR π(D3/2) ² (this mark is lost if there is a *length / A3) (ignore powers of ten)	(1)
3(a)(iii)	E4*density OR E4*7800 (ignore powers of ten) OR volume of 1 metre length x density	(1)
3(a)(iv)	5.12(spreadsheet answers must be correct to same number dec places so do not accept 5.116 or 5.11)(correct answer on spreadsheet scores mark irrespective of what's written on next page)	(1)
3(a)(v)	See $T = v^2 \mu$ OR $\int T = v \int \mu$ (not just quoting given equation) T = 82 (N) (do not penalise dec places twice, 82.1 could score both marks if more than 3 dec places given in (iv)) (correct answer on spreadsheet scores both marks)	(1) (1)
3(b)	Plot a graph of $v \rightarrow JT$, $v^2 \rightarrow T$, $f \rightarrow JT$, or $f^2 \rightarrow T$ Graph should be a straight line through the origin Statement of what gradient equals (consistent with what has been plotted) (For this experiment μ is a constant. A graph using a variable μ can score max 1 mark for the correct gradient)	(1) (1) (1)
	Total for question	10

Question Number	Answer	Mark
3(a)(i)	$v = f\lambda$ (words or symbols not numbers) length of string = $\lambda/2$ OR wavelength = 2 x length OR node to node = $\lambda/2$	(1)
3 (a)(ii)	$\pi d^2/4$ OR $\pi (D3/2)^2$ OR $\pi (D3/2)^2$	(1)
3 (a)(ll)	(this mark is lost if there is a *length / A3) (ignore powers of ten)	
3(a)(iii)	E4*density OR E4*7800 (ignore powers of ten) OR volume of 1 metre length x density	(1)
3(a)(iv)	 5.12 (spreadsheet answers must be correct to same number dec places so do not accept 5.116 or 5.11) (correct answer on spreadsheet scores mark irrespective of what's written on next page) 	(1)
3(a)(v)	See $T = v^2 \mu$ OR $\int T = v \int \mu$ (not just quoting given equation) T = 82 (N) (do not penalise dec places twice, 82.1 could score both marks if more than 3 dec places given in (iv)) (correct answer on spreadsheet scores both marks)	(1) (1)
3(b)	Plot a graph of $v \rightarrow JT$, $v^2 \rightarrow T$, $f \rightarrow JT$, or $f^2 \rightarrow T$ Graph should be a straight line through the origin Statement of what gradient equals (consistent with what has been plotted) (For this experiment μ is a constant. A graph using a variable μ can score max 1 mark for the correct gradient)	(1) (1) (1)
	Total for question	10

Answer		Mark
Pressure (of gas)	(1)	
Amount of gas		
Or mass of gas		
Or number of moles / molecules / atoms	(1)	2
Extending/extrapolating the line backwards	(1)	
The volume occupied by a gas will be zero at a particular temperature	(1)	
Or		
The graphs for different gases	(1)	
All cut the x axis at the same temp	(1)	2
Total for question		4
	Pressure (of gas) Amount of gas Or mass of gas Or number of moles / molecules / atoms Extending/extrapolating the line backwards The volume occupied by a gas will be zero at a particular temperature Or The graphs for different gases All cut the x axis at the same temp	Pressure (of gas)(1)Amount of gas(1)Or mass of gas(1)Or number of moles / molecules / atoms(1)Extending/extrapolating the line backwards(1)The volume occupied by a gas will be zero at a particular temperature(1)Or(1)The graphs for different gases(1)All cut the x axis at the same temp(1)

PhysicsAndMathsTutor.com

Question Number	Answer				Mark
5(a)(i)	1 velocity correct 2 or 3 velocities correct 4 velocities correct (no unit error)			(1) (1) (1)	3
	0.66	0.			
	0.91	0.			
5(a)(ii)	A (Can be implied within the answ The idea that the time increments velocity is (constantly) changing Or		the idea that the	(1)	
	Not B(Can be implied within the a As B gives the value over the who account that the velocity of the ba	le journey Or		(1)	1
5(b)	Source of error: (Human) reaction time Or recording the correct time Or parallax when			(1)	
	<u>Changes to the method:</u> Film/video camera with a measuring tape/scale along	the ramp (and	watch frame by frame)	(1) (1)	
	Or Motion sensor Connected to a computer/data logs	ger (to directly	plot/record distance	(1)	
	against time)			(1)	
	Or Strobe (as a timer) Set with a frequency of 1 Hz (or any sensible frequency sugges	ed with a reaso	on)	(1) (1)	3
	Total for question				7

Question	Answer		Mark
Number			
6(a)	This is describing weight/force and not the mass		
	Or the newton is not the unit of mass		
	Or mass does not have a direction		
	Or kg is the unit of mass and not force/weight	(1)	
	The velocity should be speed		
l	Or velocity would need a direction	(1)	
	The car would be decelerating		
	Or the car should be speeding up (for an acceleration)		
	Or a direction is needed		
	Or the value should be negative/-2.5 m s ^{-2}	(1)	3
6(b)(i)	Distance = 75 km	(1)	1
6(b)(ii)	Use of Pythagoras Or correctly constructed scale drawing (labels not required)	(1)	
	Displacement = 54 km	(1)	
	Direction = 34° East of North (accept angle indicated on diagram)	(1)	3
	(there is only 1 unit error for km in (i)and (ii))		
	Example of calculation		
	Example of calculation Displacement ² = $45^2 + 30^2$		
	Displacement = $\sqrt{2925 \text{ km}}$		
	Displacement = 54.1 km		
	Direction = 33.7° (east of north) Or 56° (north of east)		
	Total for question		7

Question Number							Mark
7 (a)	Calculation leading to v	v = 18.1 (m s)	¹)			(1)	1
	(A reverse argument give	ves 64.8 (kn	h^{-1}) and sco	res	the mark)		
	Example of calculation $v = 65\ 000\ \text{m}\/\ 60 \times 60$ $= 18.06\ \text{m}\ \text{s}^{-1}$	S					
7 (b)(i)	Use of distance = speed	$l \times time$ (see	the calculatio	n o	r use of 3 km)	(1)	
	Use of emission = dista	nce imes readin	g from graph			(1)	
	Use of difference betwe	een emission	s at different s	spe	eds for 1 or 3 o	cars (1)	
	(This mark may still be for 10 minutes journey					s ¹	
	CO_2 emission = 0.72 kg	5				(1)	4
	(allow range 0.63 kg to	0.81 kg)					
	Journey	CO ₂ emission	Range	N	Iarks		
	1 car 1 km	0.08 kg	0.07 to 0.09	1	(MP3)		
	3 cars 1 km	0.24 kg	0.21 to 0.27	1	(MP3)		
	1 car 3 km	0.24 kg	0.21 to 0.27	3	(MP1,2,&3)		
	1 car travelling for 10 minutes at 5 m s ^{-1} and 18 m s ^{-1}		1.02 to 1.31	3	(MP1,2,&3)		
	3 cars travelling for 10 minutes at 5 m s ^{-1} and 18 m s ^{-1}	(-) 3.49 kg	3.06 to 3.93	3	(MP1,2 &3)		
	Example of calculation Distance = 5 m s ¹ × 10 × 60 s = 3000 m = 3 km						
7	3×3 km \times (0.26 kg km					41 4	
/ (b)(ii)	Quantitative compariso the cyclist causes more Or qualitative statemen cycles	CO ₂ emissio	ons		-		1
	candidates answer must	t be consiste	nt with their v	alu	e from part (i)		
	Total for question						6

Question	Answer	Mark
Number		
8(a)	Explain the difference between scalar quantities and vector quantities. It must mention direction or give an e.g. with direction. [Vectors have direction 1 mark. Scalars don't have direction 1 mark]	1
	scalar – magnitude/size only but vector – magnitude/size and direction (1)	
	(accept vector has direction but scalar doesn't)	
8(b)	Comment on this statement. (QWC – Work must be clear and organised in a logical manner using technical wording where appropriate)	
	velocity is: a vector / speed in a given direction / = displacement/time / = (total distance in a particular direction)/time [accept references to velocity being postive and negative / changing direction] (1) end and start at the same place / distance in any direction is zero / displacement = 0 (1) so it's true – (ave) vel = zero (1) (consequential on 2 nd mark)	3
	Total for question	4

Question	Answer		Mark
Number			
*9(a	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	Measure the initial length (of the spring) Or record position of a 'fixed point' Or record the position of the bottom of the spring (with no		
	masses on the spring)	(1)	
	Add mass/weight and record the new length/position	(1)	
	Repeat for a range of masses/weights	(1)	
	Reference to a precaution taken to ensure measurements were accurate e.g. use of set square, method to reduce parallax, hang spring close to		
	rule, do not exceed proportional/elastic limit	(1)	4
9(b)	Plot appropriate graph of extension/length and force/mass	(1)	
	Calculate the gradient (of linear region)	(1)	
	Appropriate method to find k from their graph	(1)	3
	(Max 1 if no graph is suggested i.e. use $k = F/\Delta x$ and average k)		
9(c)	k would not be constant for the spring		
	Or the graph would not be a straight line		
	Or the idea that Hooke's law would not be obeyed		
	Or $F = k (\Delta)x$ does not apply	(1)	1
	Total for Question		8