Question Number	Answer	Mark	
$\mathbf{1 (a) (i) ~}$	Two relevant precautions with reasons, e.g. Ensure that the thermometer and coil are at the same part of the beaker so that the results are not affected by differences in temperature Stir water so that the results are not affected by differences in temperature Check the meter for zero error by connecting a lead across its terminals so there is no systematic error in the resistance measurements Ensure small current so no heating effect in addition to hot water which would make results inaccurate Switch off between readings so no heating effect in addition to hot water which would make results inaccurate Read thermometer at eye level to avoid parallax errors	(1)	(1)

$\left.\begin{array}{|l|l|c|}\hline \mathbf{1 (d)} & \begin{array}{l}\text { Use of ratio of resistors }=\text { ratio of p.d.s } \\ \text { Or } \\ \text { Use of } I=V / R \text { for fixed resistor and } R=V / I \text { for resistance under investigation } \\ \text { Resistance of resistor }=14.4(\Omega) \\ \text { Temperature (from graph })=27^{\circ} \mathrm{C} \text { to } 29^{\circ} \mathrm{C} \\ \text { Example of calculation } \\ \hline 24 \Omega / R=7.5 \mathrm{~V} / 4.5 \mathrm{~V} \\ \text { Resistance of resistor }=14.4 \Omega \\ \text { Temperature (from graph })=28^{\circ} \mathrm{C}\end{array} & \\ \hline & \text { (1) } & \\ \hline & \text { Total for question } & \text { (1) }\end{array}\right]$

Question Number	Answer		Mark
2(a)	Third column completed 4.04 and 3.50 Points plotted correctly and straight line drawn (ecf error in calculation for points plotted)	(1) (1)	2
2(b)	Any evidence of gradient (look at graph) Value between 0.061 and $0.066\left(\mathrm{~cm}^{-1}\right)$ (ignore - sign) Or value between 6.1 and $6.6\left(\mathrm{~m}^{-1}\right)$	(1) (1)	2
	Total for question		4

Question Number	Answer	Mark
3(a)(i)	$\mathrm{V}=\mathrm{f} \lambda$ (words or symbols not numbers) length of string $=\lambda / 2$ OR wavelength $=2 x$ length OR node to node $=\lambda / 2$	(1) (1)
3(a)(ii)	$\pi d^{2} / 4$ OR $\pi(D 3 / 2)^{2}$ OR $\pi(D 3 / 2)^{\wedge} 2$ (this mark is lost if there is a *length / A3) (ignore powers of ten)	(1)
3(a)(iii)	E4*density OR E4*7800 (ignore powers of ten) OR volume of 1 metre length x density	(1)
3(a)(iv)	5.12 (spreadsheet answers must be correct to same number dec places so do not accept 5.116 or 5.11) (correct answer on spreadsheet scores mark irrespective of what's written on next page)	(1)
3(a)(v)	See $T=v^{2} \mu$ OR $/ T=v / \mu$ (not just quoting given equation) $\mathrm{T}=82$ (N) (do not penalise dec places twice, 82.1 could score both marks if more than 3 dec places given in (iv)) (correct answer on spreadsheet scores both marks)	(1) (1)
3(b)	Plot a graph of $v \rightarrow T \mathrm{~T}, \quad \mathrm{v}^{2} \rightarrow \mathrm{~T}, \mathrm{f} \rightarrow \sqrt{\mathrm{T}}, \quad$ or $\mathrm{f}^{2} \rightarrow \mathrm{~T}$ Graph should be a straight line through the origin Statement of what gradient equals (consistent with what has been plotted) (For this experiment μ is a constant. A graph using a variable μ can score max 1 mark for the correct gradient)	$\begin{aligned} & 1(1) \\ & (1) \\ & (1) \end{aligned}$
	Total for question	10

Question Number	Answer	Mark
3(a)(i)	$\mathrm{v}=\mathrm{f} \boldsymbol{\lambda}$ (words or symbols not numbers) length of string $=\lambda / 2$ OR wavelength $=2 \times$ length OR node to node $=\lambda / 2$	(1) (1)
3(a)(ii)	$\pi d^{2} / 4$ OR $\pi(D 3 / 2)^{2}$ OR $\pi(D 3 / 2)^{\wedge} 2$ (this mark is lost if there is a *length / A3) (ignore powers of ten)	(1)
3(a)(iii)	E4*density OR E4*7800 (ignore powers of ten) OR volume of 1 metre length x density	(1)
3(a)(iv)	5.12 (spreadsheet answers must be correct to same number dec places so do not accept 5.116 or 5.11) (correct answer on spreadsheet scores mark irrespective of what's written on next page)	(1)
3(a)(v)	See $T=v^{2} \mu$ OR $/ T=v / \mu$ (not just quoting given equation) $\mathrm{T}=82(\mathrm{~N})$ (do not penalise dec places twice, 82.1 could score both marks if more than 3 dec places given in (iv)) (correct answer on spreadsheet scores both marks)	(1) (1)
3(b)	Plot a graph of $v \rightarrow \sqrt{T}, \quad v^{2} \rightarrow T, f \rightarrow \sqrt{T}, \quad$ or $f^{2} \rightarrow T$ Graph should be a straight line through the origin Statement of what gradient equals (consistent with what has been plotted) (For this experiment μ is a constant. A graph using a variable μ can score max 1 mark for the correct gradient)	$\begin{array}{\|l\|} \hline(1) \\ (1) \\ (1) \end{array}$
	Total for question	10

Question Number	Answer		Mark
4(a)	Pressure (of gas)	(1)	
	Amount of gas Or mass of gas Or number of moles / molecules / atoms	$\mathbf{(1)}$	$\mathbf{2}$
4(b)	Extending/extrapolating the line backwards The volume occupied by a gas will be zero at a particular temperature Or The graphs for different gases All cut the x axis at the same temp	$\mathbf{(1)}$	
	Total for question	$\mathbf{(1)}$	
	$\mathbf{1 1})$	$\mathbf{2}$	

| Question
 Number | Answer | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 5(a)(i) | 1 velocity correct
 2 or 3 velocities correct
 4 velocities correct
 (no unit error) | (1) |

Question Number	Answer		Mark
6(a)	This is describing weight/force and not the mass Or the newton is not the unit of mass Or mass does not have a direction Or kg is the unit of mass and not force/weight The velocity should be speed Or velocity would need a direction The car would be decelerating Or the car should be speeding up (for an acceleration) Or a direction is needed Or the value should be negative/- $2.5 \mathrm{~m} \mathrm{~s}^{-2}$	(1) (1) (1)	3
6(b)(i)	Distance $=75 \mathrm{~km}$	(1)	1
6(b)(ii)	Use of Pythagoras Or correctly constructed scale drawing (labels not required) Displacement $=54 \mathrm{~km}$ Direction $=34^{\circ}$ East of North (accept angle indicated on diagram) (there is only 1 unit error for km in (i)and (ii)) Example of calculation Displacement ${ }^{2}=45^{2}+30^{2}$ Displacement $=\sqrt{2925 \mathrm{~km}}$ Displacement $=54.1 \mathrm{~km}$ Direction $=33.7^{\circ}$ (east of north) Or 56° (north of east)	(1) (1) (1)	3
	Total for question		7

Question Number	Answer	Mark
$\mathbf{8 (a)}$	Explain the difference between scalar quantities and vector quantities. It must mention direction or give an e.g. with direction. [Vectors have direction 1 mark. Scalars don't have direction 1 mark] scalar - magnitude/size only but vector - magnitude/size and direction (1) (accept vector has direction but scalar doesn't)	1
$\mathbf{8 (b)}$	Comment on this statement. (QWC - Work must be clear and organised in a logical manner using technical wording where appropriate) velocity is: a vector / speed in a given direction / = displacement/time / $=$ (total distance in a particular direction)/time [accept references to velocity being postive and negative / changing direction] (1) end and start at the same place / distance in any direction is zero / displacement = 0 (1) so it's true - (ave) vel = zero (1) (consequential on 2nd mark)	3
	Total for question	

Question Number	Answer		Mark
*9(a	(QWC - work must be clear and organised in a logical manner using technical terminology where appropriate) Measure the initial length (of the spring) Or record position of a 'fixed point' Or record the position of the bottom of the spring (with no masses on the spring)	(1)	(1)

